题目链接:
题目大意:求0~2n-1 中有多少个数字能被3整除(包括0 和2n-1)。 n <= 2e18, 答案对 mod = 1e9 + 7取余。
解题思路:通过分析可以发现个数是 (2n / 3 + 1) % mod . 那么关键问题就是如何快速计算 2n / 3 % mod 。
由于n比较大,所以可以使用快速幂取模进行计算。然而,尽管a / b % c 可以通过逆元来计算,但前提是a整除b并且逆元存在。这里3关于mod 的逆元确实存在(互质),2n 却无法整除3,那么如何解决这个问题呢?
能够发现 2n % 3 = 1 或 2,并且当且仅当n为奇数为2,n为偶数为1。那么我们就可以将 2n / 3 % mod 转化成 2n - (n & 1? 2: 1) / 3 % mod.这样两者就能够整除了,从而也就可以采用快速幂取模计算了。
代码:
1 ll n; 2 ll x; 3 4 ll ext_gcd(ll a, ll b, ll &d, ll &x, ll &y){ 5 if(b!= 0){ 6 ext_gcd(b, a % b, d, y, x); 7 y -= x * (a / b); 8 } 9 else{10 d = a; x = 1; y = 0;11 }12 }13 void dowork(){14 ll d, y;15 ext_gcd(3, mod, d, x, y);16 if(x < 0) x = x + (abs(x) / mod + 1) * mod;17 }18 ll pow_mod(ll a, ll b){19 if(b == 0) return 1;20 ll tmans = pow_mod(a, b / 2);21 ll ans = tmans * tmans % mod;22 if(b & 1) ans = a % mod * ans;23 return ans;24 }25 void solve(){26 ll ans = pow_mod(2, n);27 ans = ans * x % mod;28 ans = (ans - ((n & 1? 2: 1) * x) % mod) % mod; 29 if(ans < 0) ans = (abs(ans) / mod + 1) * mod + ans;30 ans = (ans + 1) % mod;31 printf("%lld\n", ans);32 }33 int main(){34 dowork();35 while(scanf("%lld", &n) != EOF){36 solve();37 }38 }
题目:
DIVISION - Divisiblity by 3
Divisiblity by 3 rule is pretty simple rule: Given a number sum the digits of number and check if sum is divisible by 3.If divisible then it is divisible by 3 else not divisible.Seems pretty simple but what if we want to extend this rule in binary representation!!
Given a binary representation we can again find if it is divisible by 3 or not. Making it little bit interesting what if only length of binary representation of a number is given say n.
Now can we find how many numbers exist in decimal form(base 10) such that when converted into binary(base 2) form has n length and is divisible by 3 ?? (1 <= n < 2*10^18)
Input
Length of binary form: n
output
Print in new line the answer modulo 1000000007.
Example
Input:1
2
Output:1
2
Explanation: For n=2 there are only 2 numbers divisible by 3 viz.0 (00) and 3 (11) and having length 2 in binary form.
NOTE:There are multiple testfiles containing many testcases each so read till EOF.
Warnings: Leading zeros are allowed in binary representation and slower languages might require fast i/o. Take care.